Math 128
Worksheet 1 - September 3, 2008
Name \qquad

1. In class, we worked out the geometric meaning of $\frac{\partial}{\partial x} x^{2}-y^{2}$ at the point $(1,2,-3)$. (I.e., at $x=1, y=2$.)
This problem will work out the geometric meaning of $\frac{\partial}{\partial y} x^{2}-y^{2}$.
(a) Find $\frac{\partial}{\partial y} x^{2}-y^{2}$ at $x=1$.
(b) What cross-section of the graph of the function does setting $x=1$ correspond to? Graph this cross-section.
(c) On your 2D graph from part (b), find the point corresponding to $(1,2,-3)$ on the full 3D graph of $z=x^{2}-y^{2}$.
(d) Find the equation (of the form $z=m y+b$) for the tangent line to the $x=1$ cross section at the point you found in (c).
(e) In your graph of the $x=1$ cross section, draw the tangent line that you found in part (d).
2. Go through similar steps to find the tangent lines to $x^{2}-y^{2}$ at the point $(0,0,0)$ in the $x z$-plane $(y=0)$; and in the $y z$-plane $(x=0)$.
